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Introduction
Polarized Deep Inelastic Scattering
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SANE results for x2gp1 and x2gp2
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The dynamical twist-3 matrix element: d2
An average color Lorentz force∫ 1

0
dxxn−1{g1 + n

n− 1g2} = 1
2dn−1E

n
2 (Q2, g)

For n = 3 ∫ 1

0
x2{2g1 + 3g2}dx = d2

Interpretations of d2

• Color Polarizabilities (X.Ji 95, E. Stein et
al. 95)

• Average Color Lorentz force
(M.Burkardt)

M. Burkardt Phys.Rev.D 88,114502 (2013) and Nucl.Phys.A 735,185
(2004).

d2 = 1
2MP+2Sx

〈P, S | q̄(0)gG+y(0)γ+q(0) | P, S〉
but with ~v = −cẑ√

2G+y = −Ey +Bx = −( ~E + ~v × ~B)y

d2 ⇒ average color Lorentz force acting on quark moving backwards (since we are in inf. mom.
frame) the instant after being struck by the virtual photon. 〈F y〉 = −2M2d2
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Quark-gluon Correlations : g2(x, Q2) = gWW
2 (x, Q2) + ḡ2(x, Q2)

Twist-2 (Wandzura, Wilczek, 1977)
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Twist-3 (Cortes, Pire, Ralston, 1992)
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As Q2 decreases,
when do higher twists begin to matter?
When is the color force non-zero?
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proton: PRL 122, 022002 (2019) neutron
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Existing data

• d2 dips around Q2 ∼ 3 GeV2 for proton and neutron
• Is this an isospin independent average color force?
• Updated Lattice calculations are long over due!
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Fixed Target Technology
A quick overview of polarized fixed targets

Dynamic Nuclear Polarization (DNP) solid
Metastability-exchange optical pumping (MEOP) gas
Spin exchange optical pumping (SEOP) gas
Atomic Beam Source (ABS) internal gas

Polarized nucleon targets

DNP ~p Solid frozen target NH3, butanol, LiH
ABS ~p Internal target (Hermes)

DNP ~n From ~d

SEOP ~n From 3 ~He
MEOP ~n From 3 ~He
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Polarized Target Dilution Factor
Example: Polarized NH3 Target

Dilution

• Takes into account scattering from
unpolarized material in target.

• Need to know target geometry
and material.

• Function of x and W

f(x,W ) = Npσp(x,W )
Npσp +

∑
i
Niσi(x,W )

Polarized NH3

• Packing faction of NH3 about 60%
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Liquid 4He

∼ 3 cm

x

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

W.R. Armstrong October 11, 2019 8 / 13



Collider Benefits

Proton

p

• No dilution from
extra material

Deuteron

n
p

• Polarized neutron or
proton

3He

p
p n

• Polarized neutron

• No dilution from windows, cryogenics, molecular structure, ...
• Forward spectator tagging to identify struck nucleon.
• Arbitrary ion polarization direction
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Collider Benefits

Fixed Target Ion Collider

Dilution NH3: f ' 0.12
3He: f ' 0.92/3

proton: no dilution
neutron: f ' 1/3

Spectator Tagging Very difficult Possible with forward detectors

Luminosity NH3: Beam current limited to 100
nA → L ' 1035s−1cm−2

3He: L ' 1037s−1cm−2

L ' 1034s−1cm−2

better dilution compensates for lower
luminosity

‖,⊥ polarization NH3: physically rotated 5T magnet
leads to different rates/backgrounds
in detectors for same kinematics
3He: weak field, dual Helmholtz coils
for easy rotation.

Bunch by bunch ion spin rotation?
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Polarized Heavy Ions
Polarized EMC Effect
R ' gA

1 /g
p
1

Cloët, et.al., Phys.Rev.Lett. 95 (2005) 052302

Tagging to identify struck system
• Full tagging of spectator system (A-1)
• Identify struck nucleon to eliminate dilution of nucleus
• Would like many polarized ions beyond 3He
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Laser Driven Source
25 Years Ago at Argonne

Recent Developments

• Hybrid SEOP → K and Rb (M.V. Romalis PRL 105, 243001 (2010))
• Readily available high power diode lasers for pumping Rb (795 nm)
• Successful polarized 3He program at JLab.

Beginning to investigate general purpose hybrid SEOP to polarize heavier ions such as 21Ne.
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Summary

• Nuclear polarization is key for unraveling QCD at the EIC
• All polarization directions equally important, especially for imaging program
• Extreme forward tagging will significantly improve the science extracted with each

polarized ion electron collision
• Nuclear polarization is needed to investigate Polarized EMC Effect
• A general purpose laser driven source may provide polarized heavy ions
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Thank You!
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Backup
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E07-003 : Big Electron Telescope Array
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